
Teaching Parallel Programming Using an Interactive Parallelization Tool

Ritu Arora
Texas Advanced Computing Center

University of Texas at Austin
Austin, USA

rauta@tacc.utexas.edu

Lars Koesterke
Texas Advanced Computing Center

University of Texas at Austin
Austin, USA

lars@tacc.utexas.edu

Abstract— We are iteratively developing an Interactive
Parallelization Tool (IPT) for lowering the adoption barriers to
parallel programming (MPI, OpenMP, CUDA). While IPT is
still under active development, we have already put it to use in
our trainings on MPI and OpenMP. An overview of IPT and
some early results from its evaluation will be presented in the
poster.

Keywords-interactive parallelization tool; MPI; OpenMP;
CUDA; cloud

I. INTRODUCTION
Teaching and learning parallel programming can be a

challenging task due to several factors, such as, the low-level
nature of the popular parallel programming models and the
difficulty in troubleshooting errors like race-conditions and
deadlocks. Additionally, even before students can test the
performance and scalability of parallel programs on
production systems, it becomes important that they spend
time in familiarizing themselves with the user environment
of those systems. To surmount such challenges, we have
been developing a high-productivity Interactive
Parallelization Tool (IPT) [1] and have deployed it in the
cloud, so that, those interested in using it for generating
parallel programs and testing those programs on the
computational resources of the national CyberInfrastructure
(CI), can do so from the convenience of their web browser
[2]. A screenshot of IPT in action, when accessed through
the web-browser, is shown in Figure 1.

IPT can assist in parallelizing specific types of serial

C/C++ applications (e.g., those having regular meshes, and
nested for-loops) using MPI, OpenMP, and CUDA. It works
in the command-line mode and accepts the existing serial
programs as input. An IPT user interactively specifies the
parallel programming model and the hotspots for
parallelization in their code. On the basis of the user-
specifications and its in-built heuristics, IPT analyzes the
input serial code and generates its parallel version. The
parallel code generated using IPT is readable and is
adequately commented to provide insights into the changes
made to the serial code for parallelization purposes.

IPT can help instructors in teaching parallel
programming through demonstration and in blended learning
environments. The instructors can focus on teaching parallel
programming concepts (such as, data distribution and loop-
dependency analysis) and can then directly engage the

students in doing parallel programming exercises without
spending too much time in explaining the low-level details
related to the syntax of the different parallel programming
models, or the user environment of the production systems.
In this manner, they can free up the face-to-face time in their
classes for developing strong algorithmic foundations for
developing parallel programs and increasing the number of
hands-on exercises that can be done in the class.

IPT also supports parallelization of I/O done from MPI
and OpenMP programs. Hence, it can be used for teaching
the process of writing code that can optimally do the
communication, computation, and I/O.

Some of the test cases and the steps to parallelize them
using IPT have been made available to the community
through a GitHub repository [3]. We have also started
covering the topic of code correctness in our trainings on
parallel programming using IPT and have prepared quizzes
that can help students assess their knowledge on parallel
programming [4]. Doing this is especially important, as there
are some applications (e.g., irregular meshes) that cannot yet
be parallelized using IPT. Therefore, teaching the pitfalls or
common errors observed in parallel programs contributes
towards making the IPT users feel self-sufficient in their
manual parallelization efforts.

Figure 1. Screenshot of IPT in Action.

II. IPT EVALUATION
We have recently started using IPT for teaching parallel

programming to students from a diverse range of disciplines.
With IPT, we are able to quickly demonstrate the (1)
differences in the structure and performance of the parallel

code generated for different parallel programming
paradigms, and (2) the impact of selecting different
parallelization strategies.

Various students who have seen the IPT demo or have
participated in the IPT training sessions are interested in
using it for learning parallel programming. Some data related
the evaluation of IPT is shown in Figure 2. As can be noticed
from the data in Figure 2, 84.2% of the students in a class in
which IPT was demoed, would like to continue using it for
learning parallel programming, and 15.8% students were not
sure about their decision. All the students found IPT to be
useful. Across all the surveys conducted during IPT
trainings, more than 80% people were interested in
continuing to use IPT for their parallelization efforts. About
50% of the participants in some of the IPT trainings/tutorials
belonged to the underrepresented groups as identified by the
National Science Foundation.

Through the feedback collected from the community, we
have observed that there is a demand for extending IPT for
supporting the parallelization of serial programs written in
Fortran as well. As a next step, we will be extending IPT to
support the parallelization of Fortran applications as well.

ACKNOWLEDGMENT
The work presented in this paper was made possible

through National Science Foundation (NSF) award number
1642396. We are very grateful to NSF for the same.

REFERENCES

[1] R. Arora, J. Olaya, and M. Gupta, “A Tool for Interactive
Parallelization,” In Proceedings of the 2014 Annual Conference on
Extreme Science and Engineering Discovery Environment (XSEDE
'14). ACM, New York, NY, USA, Article 51, 8 pages. 2014. DOI:
https://doi.org/10.1145/2616498.2616558

[2] IPT Gateway. Website accessed on November 19, 2018:
https://ipt.tacc.cloud/

[3] IPT GitHub repository. Website accessed on November 19, 2018:
https://github.com/ritua2/IPT

[4] T. Nguyen Ba, and R. Arora, “Towards Developing a Repository of
Logical Errors Observed in Parallel Code for Teaching Code
Correctness,” In Proceddings of the EduHPC 2018 workshop @
SC18.
https://grid.cs.gsu.edu/~tcpp/curriculum/sites/default/files/TrungNguy
en_0.pdf

Figure 2. Student	
 feedback	
 on	
 IPT.	
 	

