
Augmenting Massive Hands on Labs (MHOL) in Parallel Computing Course
Prathamesh Tugaonkar

Department of Computer Engineering,

Terna Engineering College,

Mumbai India

tprathamesh21@gmail.com

Abstract— Teaching parallel computing is always a challenge

as it requires certainly a paradigm shift in thinking from

sequential learning to parallel programming. Providing plenty

of exercises would work as scaffoldings when monitored and

instructed by an instructor. Let learners come across the

errors and try out various ways of solving the problem. Also,

computing requires reasonably good architecture. Investing in

online HPC (High Performance Computing) platforms,

MOOCs or clusters formation would be of good choice at an

initial stage. This paper is the precursor to pedagogy, course

outcomes (COs), constructivism, and available architectures

that can be readily used for computation with a minimum

investment for HPC or Parallel Computing course.

Keywords- Constructivism; High Performance Computing;

Course Design; Blooms’ Taxonomy; Parallel Programming,

OpenMP, Message Passing, Big Data.

I. INTRODUCTION

Computing challenges from array element addition,
matrix multiplication to determining molecular model, body
genome map, weather prediction, and fluid pressure
dynamics signifies the empirical evolution in High
Performance Computing (HPC). This evolution should be
anticipated by motivated young minds to engage themselves
in parallel computing/programming analysis. Notion of this
paper is to design lucrative parallel programming content at
graduate level in engineering so that students will start
learning parallel codes at an early stage[1]. Teaching this
subject in or before fourth semester will help the students to
develop parallel belief system for programming despite
sequential programming.

Understanding parallel processing is the important factor

for advancing computation towards efficiency. To facilitate
the learning, this paper talks about the combined approach of
Vygotskian constructivism and principles of Bloom’s
Taxonomy. Constructivism affirms the learning through
errors or experience by student in order to understand and
remember the concepts. Conceptual understanding can be
broaden by providing students with large number of
programming exercises be in group or individually[5][6].
This also signifies the need of massive hands on labs where
massive is related to providing large number of
programming exercises. This massive approach of providing
programming exercises will help learner to be open to the
exhaustive numbers of errors to trial on[7].

For an effective course design, Blooms hierarchy is
globally followed to pen down the course outcomes. Course
outcomes for High Performance Computing course are as
follows:

CO1: Identify approaches and platforms towards parallel
processing for High Performance Computing. (Remember)

CO2: Interpret the analogy that anticipates the
parallelism. (Understand)

CO3: Apply the various constructs, directives of the
programming languages to infer the efficient parallel code.
(Apply)

CO4: Compare the result of Sequential and Parallel code
execution and analyze the parameter measures. (Analyze)

CO5: Justify the desired enhancement in the program and
evaluate it across various parallel architectures. (Evaluate)

CO6: Modify any case study that encompasses current
HPC technologies with respect to acquired knowledge
throughout this course. (Creating)

II. LITERATURE REVIEW AND ANLOGIES

Pedagogical approach towards Parallel programming is
beneficial when it is taught with human life analogies.
Number of exercises with examples will help understanding
the parallel concepts [1] e.g. Paper corrections by faculty
members. Class rooms can also be made live by introducing
games where learner is treated as a processor. Games can
illustrate the various shared/parallel memory techniques, race
conditions, local memory concepts etc[2].Similar method is
found in [3], emphasizing the analogies based model to
demonstrate the parallel programming. Another approach of
teaching learning process is studied in [4] covering benefits
of MOOCs for HPC courses. Authors have identified the
various sources for providing Hands on services to the
students by Open edX etc. It is also suggested by the authors
to follow Backward Designs questionnaire explained by
Grant Wiggins. It also talked about the scientific computing
and paraphrased the measure metrics like speed up to judge
the efficiency in their grid architecture.

III. ARCHITECTURES AT THE INSTITUTES

Certainly, due to involvement of industries such as IBM,
Intel, Amazon, NVDIA, HPC is no more a hype but a reality.
Students are keen towards understanding the concepts of
parallel computing but the problem arises in implementing or
in computing stage. It is hardly possible for private

TABLE I. BRIEF COURSE CONTENT

engineering colleges to setup the demanding architecture. I
would prefer to demonstrate on the architecture of Colfax.
I am also setting up the Beowulf Cluster at my institute.
Syllabus designed by University of Mumbai is briefly
correlated with the technologies in Table I. Examples
mentioned in the table can be assigned and analyzed
iteratively to make it massive programming exercise. Case
studies related to Financial Computations such as market
risk analysis, Computational Fluid Dynamics (CFD) to
understand memory utilization, N-Body simulations,
Creating DNA sequence by Penn State etc. will help to
make convoluted concepts simple. To give deeper
understanding of what do supercomputers mean and what
is desired configuration for them, to be discussed in the
class. SahasraT at IISc which is having Cray owned Aries
interconnect is explained followed by terminologies like
CPUs, GPUs, cores, hyper threading FLOPS etc.
Similarly, Intel Knights Landing architecture at Colfax is
explained which uses Omni-Path interconnect fabric.
Continuous assessment through Quiz, Group activities in
class will facilitate the learning [7].

IV. CONCLUSION

At a beginner’s level, this course design would set up a
strong foundation for learners for Parallel Computing.
This design is primarily the combined approach of
Constructivism and Blooms Taxonomy which is cognitive
approach towards learning. Plenty of exercises, termed as
massive, would keep learners engaged. Monitoring by
instructor will help in keeping track of the progress and
push the learners if stuck. Analogies will help in
understanding the scope of the parallel computing.
However, this design will be more fruitful if Quiz,
Assignments, Group Projects are assigned to the learners,
questions mapped to the COs.

REFERENCES

[1] Steven A. Bogaerts, “One Step at a Time: Parallelism in an
Introductory Programming Course”, Journal of Parallel and
Distributed Computing, 2016

[2] Andrew T. Kitchen and Nan C . Schaller,Game Playing As A
Technique For Teaching Parallel Computing Concepts , SIGCSE
Bulletin, 1992.

[3] Henry Neeman, et.al. “Analogies for Teaching Parallel Computing
to Inexperienced Programmers” SIGCSE Bulletin, 2006

[4] Julia Mullen, “Learning by Doing, High Performance Computing
Education in the MOOC Era” Journal of Parallel and Distributed
Computing, 2017.

[5] Julia Mullen, “Designing a New High Performance Computing
Education Strategy for Professional Scientists and Engineers”,
IEEE 2016.

[6] B. Neelima, “High Performance Computing education in an Indian
engineering institute”, Journal of Parallel and Distributed
Computing,2017.

[7] Donald Johnson, et.al. “Teaching Parallel Computing to
Freshmen”, Conference on Parallel Computing for
Undergraduates, 1994

Concept Relative Examples
Programming Language/

Compilers/Libraries
Identified Architectural Tools

Unlearning the code

Serialization

1. Pictorial View

2. General aspect of

Serialization vs.

Parallelization

  AWS HPC Clusters

 MATLAB Distributed Computing

Server™

 Parallel Computing

Toolbox™(MathWorks)

 Access to supercomputer at Colfax

(Through Coursera course)

Dependency 1. SQL Query

2. Fibonacci Series

C, C++ OpenMP, Intel OpenMP Parallelism (Shared

Memory)

1. Jigsaw Puzzle

2. Addition of Elements of

Array (More than

1000000).

Parallelism (Distributed

Memory)

1. Stencil (Edge Detection in

an Image)

2. Simulate Vibrating String

using FDM

Numactl, Memkind,

MPI,mpi4py,FastMPJ, MPJ Express,

Apache Hadoop

