
The Structure of a Project-Based Course on the Fundamentals of Distributed

Computing

Prasun Dewan

Department of Computer Science

University of North Carolina

Chapel Hill, USA

dewan@cs.unc.edu

Abstract—We have developed a novel structure for a course on

distributed computing suitable for juniors, seniors and

graduate students that covers (a) use, design and

implementation of state of the art IPC mechanisms, and (b)

implementation and experimentation with state of the art

consistency algorithms.

Keywords- education, remote procedure call, Paxos, atomic

broadcast, two-phase commit, non-blocking I/O, performance.

I. MOTIVATION AND PROBLEM

The motivation for teaching distributed computing is
relatively straightforward. It is replete with concepts that are
difficult to self-learn and are the foundation for both
traditional fields such as distributed database, operating, and
simulation systems, and relatively new areas such as
distributed collaboration and machine learning, mobile
computing, sensor networks, and IOT (internet of things).
Yet, unlike related subjects such as programming languages,
compilers, and algorithms, there is no generally accepted
approach to teaching the fundamentals of this subject to
undergraduate students. We describe the structure of a course
we have developed to address this limitation.

II. SCOPE: CONSISTENCY AND IPC ABSTRACTIONS

The trickiest issue we faced arose from the fact that
almost every area of non-distributed computing extends into
distributed computing – it is difficult to imagine any
computation that could not benefit from distribution. Which
of these areas should one cover in a single course? Our
answer was to focus on areas in non-distributed computing
considered most fundamental – programming abstractions
and algorithms.

Arguably, a deep understanding of programming
abstractions requires knowledge of how they are designed
and implemented. Thus, we covered use, design, and
implementation of abstractions for distributed, that is, inter-
process, communication (IPC).

Given that IPC is layered above network protocols, and
any distributed application is also a concurrent application,
we required, as prerequisites, courses on networking or
operating systems, making this a course for juniors, seniors,
and graduate students.

III. ALGORITHMS: CONSISTENCY/CONSENSUS

The course focused on algorithms for consistency and
consensus rather than speed up, as the latter fall more in the
domain of parallel computing. These included the (log—
based) Two Generals’ Problem, non-atomic and atomic
broadcast, two-phase commit, and Paxos. Log-based
algorithms were contrasted with state-based consistency
mechanisms, and the applications of both kinds were given
in replicating data centers (such as those provided by
Amazon and Oracle), data sharing systems (such as Google
Drive and Dropbox), and nested transactions.

IV. ABSTRACTIONS STUDY: IPC DESIGN SPACE

The course developed an IPC design space with several
dimensions including blocking vs non-blocking,
synchronous vs asynchronous, guarded vs non-guarded,
serialization vs byte transfer, and remote assignment vs
procedure call. Influential IPC mechanisms were placed in
this space including Unix signals, pipes and sockets, Ada
Rendezvous, and CSP Remote I/O.

V. ABSTRACTION USE: JAVA IPC

Arguably, it is important for all students, and especially
undergraduates, to gets hands-on experience with concrete
implementations to understand abstract concepts. This, in
turn, raises the issue of the language used for implementing
assignments. We chose Java for two reasons. First, it is
statically typed, particularly important for distributed
programs, which are relatively small but difficult to debug.
Second, it provides four different, layered, state of the art
IPC abstractions – non-blocking byte communication,
blocking byte communication, serialized object
communication, and remote procedure call (RPC). Our
assignments involved the use of three of these layers – they
ignored blocking byte communication, typically covered by
networking courses that teach sockets.

VI. ABSTRACTION IMPLEMENTATION: GIPC

The use of Java allowed us to meet to our goal of
developing assignments involving the use of state of the art
IPC abstractions. Java, however, does not provide an easy
way to substitute or customize layers. For instance, it is not
possible to make its RPC layer – called RMI –use non-
blocking I/O for byte communication or to change the

Funded in part by NSF grant OAC 1829752

algorithm used for object-graph serialization. To overcome
this limitation, we created our own implementation of a Java
IPC stack in a system called GIPC (Generalized/Group IPC),
which is in the spirit of creating educational operating
systems such as Xinu and MINIX.

VII. LAYERED ASSIGNMENTS  PROJECT

Our programming assignments were layered to form a
semester-wide project, allowing students to better understand
the relationship among and motivation for the concepts
implemented. Successive assignments required students to
implement/use additional IPC abstractions and
consistency/consensus algorithms. Later assignments
implicitly tested almost all aspects of previous assignments.

Students started with a single-process interactive
simulation of Halloween trick and treat (Fig. 1),
implemented by a student (Beau Anderson) as part a CS-2
course taught by the author. The first assignment required
them to implement both non-atomic and atomic broadcast
using Java NIO, and replicate the simulation using both of
these algorithms. Which consistency algorithm was used was
determined in each replica by a dynamic parameter,
consistency-choice.

The next assignment required them to add a second
mechanism for communication – Java RMI. Thus, the
project now supported in each simulation a second dynamic
parameter, IPC-choice, which determined if Java NIO or
RMI was used for atomic and non-atomic broadcast. In
addition, students were required to support replication of
changes to two aspects of the meta-state: consistency-choice
and IPC-choice. Thus, consistency-choice was recursively
made consistent using a consistency algorithm!

The third assignment required them to add (a) GIPC to
the set of supported IPC mechanisms, and (b) two-phase
commit to the set of consistency mechanisms. With two-
phase commit, a client could veto execution of a simulation
command or changes to the IPC-choice and consistency
mechanism.

Three subsequent assignments involved changing aspects
of GIPC using the Factory design pattern. Serialization of
physical structures controlled by inheritance-based class
serializers was changed to serialization of logical structures
controlled by delegation-based interface serializers. An
explicit receive was added to the supported implicit,
notification-based receive. Asynchronous procedure
invocation was changed to synchronous invocation using the
explicit receive. Serialization was made as extra credit
assignment.

For the last assignment, a GIPC implementation of Paxos
was provided to the students – they used it to expand the
supported consistency mechanisms and create and
understand corner cases illustrating the nature of and need
for the three Paxos phases.

Thus, their final project used their own implementations
of two-phase commit, atomic broadcast, and non-atomic
broadcast together with the GIPC Paxos implementation to
replicate regular and meta-state. Moreover, the GIPC-based
algorithm implementations, in turn, used the students’
implementation of remote procedure call, explicit receive,

and serialization. The result was a comprehensive project of
which, to the best of our knowledge, students were proud.

VIII. ASSIGNMENT DEMONSTRATION

As live demonstrations take a significant time to set up
and run, for each assignment, students created videos
explaining their implementations, demonstrating cases that
created and prevented various forms of inconsistency, tracing
the steps of their algorithms through the debugger and logs,
and showing their performance results. As the simulation
was interactive, inconsistencies were visualized (Fig 1.).

Performance was usually compared by running all
processes on a single computer. The third assignment
required them to also use separate virtual computers. Several
Cloud infrastructure could be used to obtain virtual
computers. We used NSF’s CyVerse as we are currently
funded by NSF to study and improve the training
mechanisms supported by it. By using CyVerse, we exposed
students to an important application of the studied
distributed-computing concepts.

Figure 1. Snapshots from the video submission of a student (Andrew

Huang) showing an inconsistency and its cause.

Assignment descriptions, and videos of the lectures along
with PPTs from which they were created, were available
from http://www.cs.unc.edu/~dewan/533/current/index.html
The published material included background information on
both concurrency and networking as few students satisfied
both prerequisites It allowed the course to be flipped,
focusing, during class time, on reviewing the material and
answering open-book quiz questions collaboratively.

IX. SUMMARY AND FUTURE WORK

The course covered a wide range of fundamental topics
in algorithms and abstractions. A carefully crafted project
connected these concepts together. Students were provided
educational scaffolding code in the form a customizable IPC-
stack and a Paxos implementation. We are currently
developing automatic checks for grading the assignments.
The author can be contacted for more information.

http://www.cs.unc.edu/~dewan/533/current/index.html

