
SimuLock - Simulator for lock based synchronization primitives on many-core
processors

Ajit Singh
IT Dept, Indian Inst. of Info. Tech

Allahabad, India
rsi2016004@iiita.ac.in

Dr. Pavan Chakraborty
IT Dept, Indian Inst. of Info. Tech

Allahabad, India
pavan@iiita.ac.in

Abstract—Simulock, is a queueing network based simulator
for lock based synchronization algorithms, that simulates
execution traces of benchmark application generated through
instrumentation of applications. Its a graphical tool showing
interaction of different processor components(cores, caches,
NOC) while executing multi-threaded SMP application, syn-
chronized using different locking approaches. A detailed report
generated after analyzing an array of locking primitives with
multiple scheduling approaches(FIFO, LIFO, SRPT, RAN-
DOM ...) is provided to the user, allowing him to make a better
informed decision about which locking approach to use.

Keywords-component; formatting; style; styling;

I. INTRODUCTION

In multi-threaded applications, synchronization over-
head(SO) due to locks, is defined as accumulation of number
of cycles threads wait while waiting for some other thread
holding the lock to release it and subsequently waiting thread
getting the lock. SO is higher for non-scalable locks(e.g.
ticket lock) than queue based scalable locks(e.g. MCS,
CLH) [1], due to the problem of exponentially increasing
cache coherence overheads because of global spinning. This
collapse in performance is even observed where moderate
numbers if lock acquisition and release are involved.

Researcher [2] [3] have experimented would multiple
locking algorithms on an array of benchmark application
and kernels. Which locking algorithm would be best for
which application is still an open problem. Simulation and
analysis in this paper is confined to queue based locks and
pthread mutex. Mutex is a hybrid lock which first attempts
locking using simple atomic instructions before attempting
high contention suitable MCS lock. Not all multi-threaded
application suffer due to synchronization overhead.

A simple rule of thumb to gage extent of SO suffered
by an application, is by taking product of number of lock
allocation/de-allocation(N) made and size of critical section
in cycles (Ccs), in every thread. Having large critical section
i.e. locking at very course granularity is not advisable. So
in most cases(well written applications), if N in a thread is
large an application will suffer significant SO. SO is also
affected by order in which waiting lock requests are served.

II. QUEUEING NETWORK MODEL OF SYNCHRONIZING
THREADS

Application with synchronizing threads are modeled as a
closed queueing network. While Queueing network based
modeling have been used to model multi-threaded applica-
tion [4], synchronization overhead has been abstracted to
an average delay. SO is a complex phenomena, increasing
significantly in comparison to overall thread execution time
as number of contending threads increases, too complex to
be modeled as a constant delay. It is therefore felt, it should
be modeled in detail.

Before modeling every multi-threaded application is in-
strumented and a trace of threads getting into and coming out
of critical sections(CS) is generated. Based on these traces an
application is classified as having homogeneous(each thread
CS and non-CS(NCS) taking equal number of cycles) and
heterogeneous(varying cycles for CS and NCS) threads. All
details except threads experiencing contention due to locks
are abstracted out. Each thread is thus reduce to a trace
consisting of N time repetitive sequence of a set of critical
sections and a set of non-critical sections, Fig.1.

Figure 1. Threads as collection of repetitive NCS and CS sections

For the analysis, it is assumed that number of threads
are less than or equal to number of cores. Also threads
are pinned to their respective cores. Number of cores P
defines the population size of the close queueing network. N,
number of lock acquisition and release defines the number
of iteration of the simulation. All queue’s are modeled as
/D/1 queues, with service time having exponential distri-
bution. None of the existing tool have the desired feature
to configure routing strategy from the infinite server NCS



Figure 2. Queueing network having multiple queue’s

delay node. This simulator defines the routing strategies that
can be adopted by lock scheduler when multiple threads are
concurrently trying to acquire the lock.

In simple case FCFS strategy can be followed. Another
possibility is to allocate lock to threads with shortest remain-
ing time (SRT). SRT can be defined by looking at whether
requesting threads and thread holding the lock are on same
core(Hyper-threads), requiring short intra-core delays, or are
on the same socket, requiring longer inter-core(NOC) delays
or on different sockets, requiring longest inter-socket delays.
Starvation is a problem when following SRT policy, hence
some aging policy is also implemented in the lock scheduler
Fig.2.

III. MEASUREMENTS AND RESULTS

Simulation and analysis extracts parameters that would
characterize SO for different applications.

A. Homogeneous threads

SO for homogeneous threads can be characterized using
following parameters:

1) How many threads lock was assigned before it was
reassigned to the current thread.

2) Aggregate of how many assignment of locks to other
threads happened after last allocation to the a partic-
ular thread. This will show extent of load imbalance.
For homogeneous threads it should be as low as
possible.

3) Average latency of lock acquisition and release.

B. Heterogeneous threads

SO for Heterogeneous threads can be characterized using
following parameters:

• Count of allocation to each delay node for different
lock scheduling strategies.

• Average Latency of lock acquisition and release.

IV. CONCLUSION

It is observed that while SRT could be a good strategy
for random heterogeneous threads, for homogeneous threads
FCFS is an optimal strategy. In a queue its the variance that
kills the performance not the latency.

REFERENCES

[1] S. Boyd-Wickizer, M. F. Kaashoek, R. Morris, and N. Zel-
dovich, “Non-scalable locks are dangerous,” in Proceedings of
the Linux Symposium, 2012, pp. 119–130.

[2] T. David, R. Guerraoui, and V. Trigonakis, “Everything you
always wanted to know about synchronization but were afraid
to ask,” Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles - SOSP ’13, pp. 33–48, 2013.

[3] H. Guiroux, R. Lachaize, and V. Quéma, “Multicore Locks
: The Case is not Closed Yet,” USENIX Annual Technical
Conference, 2016.

[4] H. Che and M. Nguyen, “Amdahls law for multithreaded
multicore processors,” Journal of Parallel and Distributed
Computing, vol. 74, no. 10, pp. 3056–3069, 2014.


