
Early Introduction to Parallel Computing

via Applications in Data Analytics

Sukhamay Kundu

Computer Science Department

Louisiana State University, Baton Rouge, LA 70803

kundu@csc.lsu.edu

Abstract—Data analytics is an important application-area for
parallel computation and is suitable for early introduction to
parallel computation for undergraduate and graduate students.

We present a simple, important clustering problem in Data
Analytics and the parallelization of an efficient sequential solution
algorithm for it. We have used this example successfully in
a 1st yr. graduate Algorithm course in Fall-2018 to teach the
application of parallel prefix-sum and other related techniques
for an early introduction to parallel computing. We plan to use
it for a 4th yr. undergraduate course in Spring-2019.

Index Terms—clustering, data analytics, parallel computing

I. THE CLUSTERING PROBLEM

Clustering of large data-sets into a small number of clus-

ters is a common and important problem in Data Analytics.

We consider here clustering of 1-dimensional data for three

reasons: (1) it has many important applications, (2) it has

a specialized efficient sequential algorithm, and (3) it offers

multiple opportunities to use parallel computation. These make

it a suitable path-way for an early introduction to parallel com-

putation for senior undergraduates and beginning graduates.

Problem-OptC: Let S = {si : 1 ≤ i ≤ N}, si < sj for

i < j, be the scores in a measurement (say, a class-test) and

let 0 < fi = f(si) the frequency of si. We want to find an

optimal partition of S into n ≥ 2 disjoint clusters or intervals

I1, I2, · · · , In (in the left to right order) of consecutive scores

for assigning letter-grades to each si so that the scores in

each Im are ”close” to each other. We measure the closeness

of scores in Im by Em =
∑

k fk(sk − µm)2, where µm =
(
∑

k fksk)/(
∑

k fk) = the average score in Im, and all the

sums are over sk ∈ Im. An optimal n-clustering or n-partition

is one that minimizes E =
∑

m wmE(Im) for a given cluster-

weights wm > 0, 1 ≤ m ≤ n, which can be proportional to

the grade-points associated with the letter-grades.

Example. Fig. 1 shows the optimal 3-clustering of 5 equally

spaced scores for two different weights. In Fig. 1(i), s3 = 6

and s4 = 7 are not in the same Ij because that would make

E(Ij) and E too large because of large f3 and f4. In Fig. 1(ii),

the large w3 requires E(I3) to be small, forcing I3 = {s5}
and I2 = {s3, s4}. Fig. 2 shows that modifying s5 to 9 we get

the same optimal 3-clustering for both weights W1 and W2 as

in Fig. 1. The extra gap between s4 and s5 makes s5 form a

cluster by itself and the other two clusters are as in Fig. 1(ii).

In what follows, we write Ii,j (or, in short Iij ) for {sk :
i < k ≤ j}, 0 ≤ i < j ≤ N ; the associated average and error

are denoted by µij and Eij , respectively.

4

20

5

10

6

25

7

25

8

10

I1 I2 I3

(i) W1 = 〈1/3, 1/3, 1/3〉 .

4

20

5

10

6

25

7

25

8

10

I1 I2 I3

(ii) W2 = 〈1/5, 1/5, 3/5〉 .

Fig. 1. The optimum 3-clusterings of S = {4(20), 5(10), 6(25), 7(25), 8(10)},
with frequencies shown in parentheses, for weights W1 and W2.

4

20

5

10

6

25

7

25

9

10

I1 I2 I3

Fig. 2. The optimum 3-clustering of S′ = {4(20), 5(10), 6(25), 7(25), 9(10)}
for both weights W1 and W2 as in Fig. 1.

II. AN EFFICIENT SEQUENTIAL ALGORITHM

We solve OptC by converting it into a special shortest-path

problem in the complete acyclic digraph G on nodes {x0, x1,

· · · , xN} and links (xi, xj), i < j. A link (xi, xj) represents

the cluster-interval Iij and has cost c(xi, xj) = E(Iij). See

Fig. 3. The n-step x0xN -paths correspond to n-clusterings of

S, and vice-versa; likewise, for the shortest n-step x0xN -paths

the optimal n-clusterings of S. If a link (xi, xj) is the kth step

of an x0xN -path, it contributes wkEij to the path-cost.

x0 s1 x1 ⋅⋅⋅ xi si+1 ⋅⋅⋅ s j x j s j+1 ⋅⋅⋅ xN

E0,i Ei, j E j,N

Fig. 3. A 3-step x0xN -path; its cost is w1E0,i + w2Ei,j + w3Ej,N .

Let dk(xj) = the length of a shortest k-step x0xj-path for

j ≥ k and k ≤ n. If we know all Eij , then for each fixed

k, 1 ≤ k < n− 1 we can compute the row of dk+1(xj), j ≥
k+1 from the row of dk(xi), i ≥ k, from equns. (1)-(3) below.

d1(xj) = w1E0j (1)

dk+1(xj) = min{dk(xi) + wk+1Eij : k ≤ i < j} (2)

dn(xN ) = min{dn−1(xi) + wnEiN : n− 1 ≤ i < N} (3)

For n = 2, we need only E0j and EjN for 1 ≤ j < N ;

we need all Eij ’s for n > 2. Fig. 4, where we use the short

notation dkj for dk(xj), is a graphical representation of equns.



(2)-(3) for the case n = 4. Here, a link from dk,i to dk+1,j

indicates that the minimum for dk+1,j involves the term dk,i+
wk+1Ei,j . It also shows that to compute dn(xN ) we need only

dk,j , 1 ≤ k < n, k ≤ j ≤ N − (n− k).

d1,1 d1,2 d1,3 d1,4 ⋅⋅⋅ d1,N−3 d1,N−2 d1,N−1 d1,N

d2,2 d2,3 d2,4 ⋅⋅⋅ ⋅⋅⋅ d2,N−2 d2,N−1 d2,N

⋅⋅⋅

d3,3 d3,4 ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ d3,N−1 d3,N

⋅⋅⋅ ⋅⋅⋅

d4,N

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅

Fig. 4. A graphical representation of equns. (2)-(3) for n = 4.

To compute Eij ’s efficiently, we let Fij =
∑

k fk, Sij =∑
k fksk, and SSij =

∑
k fks

2
k for 0 ≤ i < j ≤ N , where

each sum is taken over sk ∈ Iij . Then, µij = Sij/Fij and

Eij = SSij−Fijµ
2
ij . We can compute all Fij ’s in O(N2) time

using equn. (4) below with the initializations Fi,i+1 = fi+1. A

similar remark holds for Sij ’s, SSij’s, the equns. (5)-(6), and

the initializations Si,i+1 = fi+1si+1 and SSi,i+1 = fi+1s
2
i+1.

Thus, we can compute all Eij ’s in O(N2) time and an optimal

n-clustering in O(nN2) time by the algorithm SeqOptC below.

Fi,j+1 = Fi,j + fj+1, for i < j < N (4)

Si,j+1 = Si,j + fj+1sj+1, for i < j < N (5)

SSi,j+1 = SSi,j + fj+1s
2
j+1, for i < j < N (6)

Algorithm SeqOptC //sequential algorithm for OptC

1. For i = 0, 1, ⋅⋅⋅, N − 1, do the following:

(a) Let Fi,i+1 = fi+1, Si,i+1 = fi+1si+1, SSi,i+1 = fi+1s2
i+1.

Also, let µi,i+1 = si+1 and Ei,i+1 = 0.

(b) For i + 2 ≤ j ≤ N , compute Fi, j , Si, j , SSi, j , µi, j , and
Ei, j using equns. (4)-(6) and let µi, j = Si, j /Fi, j and

Ei, j = SSi, j − Fi, jµ
2
i, j .

2. Let d1(x j) = w1E0, j for 1 ≤ j ≤ N − (n − 1).

3. For each k = 1, 2, ⋅⋅⋅, n − 1, compute dk+1(x j)’s from
dk(x j)’s for k + 1 ≤ j ≤ N − (n − k − 1) using equn. (2).

4. Finally, compute dn(xN ) using equn. (3).

To compute the intervals of an optimal n-partition of S, we

can keep track of an i = ik,j which gives the minimum for

dk+1(xj) and an i = in−1,N for the minimum for dn(xN ) in

steps (3)-(4) of the algorithm SeqOptC. Let in−1 = in−1,N ,

in−2 = in−2,j for j = in−1, in−3 = in−3,j for j = in−2,

and so on. The successive intervals of an optimal n-patition

or n-clustering are I0,i1 , Ii1,i2 , · · · , Iin−1,N .

III. PARALLELIZATIONS OF ALGORITHM SEQOPTC

A. Case of N agents or CPUs

We compute (j+1)th column of Fi,j+1’s in Fig. 5 in parallel

from jth column using equn. (4) and Fj,j+1 = fj+1. Alter-

natively, we can initialize 1st diagonal items Fi,i+1 = fi+1,

0 ≤ i < N , in Fig. 5 in parallel, then compute 2nd diagonal

items Fi,i+2 = Fi,i+1+fi+2, 0 ≤ i < N−1 from 1st diagonal

items in parallel, and so on. Both methods take O(N) time to

compute all Fi,j ’s. Likewise, we compute all Si,j’s and SSi,j’s

in O(N) time. Finally, we compute µi,j ’s and then Ei,j ’s in

parallel (by rows, columns, or diagonals) in time O(N). This

completes parallelization of step (1) in algorithm SeqOptC.

Time

1 2 3 4 ⋅⋅⋅ N − 1 N

F0,1 F0,2 F0,3 F0,4 ⋅⋅⋅ F0,N−1 F0,N

F1,2 F1,3 F1,4 ⋅⋅⋅ F1,N−1 F1,N

F2,3 F2,4 ⋅⋅⋅ F2,N−1 F2,N

⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅
FN−2,N−1 FN−2,N

FN−1,N

Fig. 5. Computing Fij’s in parallel by columns.

Because it takes O(logN) time to compute the minimum in

equn. (2) using N agents, we can compute all dk,j , 1 ≤ k < n
and k ≤ j ≤ N−(n−k), in time O(nNlogN). This completes

parallelization of step (3) in SeqOptC. Clearly, step (2) can be

done in O(1) time and step (4) in O(log N) time. This give

total time O(nNlog N) for OptC using N agents.

B. Case of N2 or, more precisely, N(N + 1)/2 agents

Each row Fi,j , j ≥ i + 1, in Fig. 5 is the prefix-sum of

the base array [fi+1, fi+2, · · · , fN ]. We use N − i agents

to initialize the base array in O(1) time and to compute the

prefix-sum in O(log N) time. Thus, we compute all rows in

Fig. 5 in parallel using N(N +1)/2 agents in time O(logN).
(Note: we can also compute Fi,j’s columnwise as prefix-

sums; for the jth column bottom to top, the base array is

[fj, fj−1, · · · , f1].) We likewise compute all Si,j and SSi,j

(by rows or columns) as prefix-sums in O(log N) time. Now,

we compute all µi,j and Ei,j in parallel in O(1) time.

Next, we compute d1,j , 1 ≤ j ≤ N − (n − 1) in O(1)
time using N agents. Then, for each fixed k < n − 1, we

compute the min in each dk+1,j in equn. (2) in time O(logN)
using j − k agents. Thus, computation of the row of dk+1,j ’s

from its previous row of dk,j ’s takes O(log N) time using at

most N(N + 1)/2 agents. We take additional O(log N) time

to compute dn,N . This gives O(nlogN) time for OptC using

N(N + 1)/2 agents.

IV. CONCLUSION

We present here several ways of parallelizing a well-known

efficient sequential algorithm for optimal clustering of a set of

1-dimensional data points into n ≥ 2 parts for an early intro-

duction to parallel computation for senior level undergraduates

and beginning graduates via applications in Data Analytics.

See [1] for some other relevant works.

REFERENCES

[1] Topics in parallel and distributed computing: introducing concurrency
in undergraduate courses (eds. S.K. Prasad, A. Gupta, A.L. Rosenberg,
A. Sussman, and C. Weems, Morgan Kaufmann, 2015.


